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Abstract : Propargylic fluorides are converted in a short sequence irvolving
hydrostannylation, iodination and Pd catalysis into new stereodefined polyunsaturated
systems with a fluorine atom in the allylic position. © 1999 Published by Elsevier Science Ltd. All rights reserved.

The introduction of fluorine atoms into biomolecules strongly modifies their physical and biological
properties leading, for instance, to useful drugs or interesting pharmacological tools. ! The regio-and
stereochemical control in the monofluorination at the position vicinal to unsaturated systems is however still
a difficult problem.2 We have reported recently that some chiral transition metal complexes [ Fe’, Cr, Re’]
efficiently control the dehydroxy-fluorination and this is especially useful in the case of final target molecules
or for late intermediates. A complementary approach is to prepare monofluorinated key building blocks that
can be claborated later into the desired target molecules. Such a strategy has been elegantly demonstrated for
instance in the case of o-fluorinated carbonyl compounds. ¢ Acetylenic derivatives are now widely used for
stereocontrolled synthesis of polyunsaturated systems via short sequences including hydro- or carbo-
metallation followed by transition metal catalysed C-C bond formation. ’ The purpose of this communication
is to demonstrate, for the first time, that such a sequence is compatible with a propargylic fluoride. Using
derivative 1, selected as a model, we have prepared the novel vinyl stannanes 2 and iodides 3 and then
converted 3 utilising Pd catalysed reactions into enynes 7 and dienes 8 bearing a single fluorine atom in allylic

position.
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The synthesis of 1 (Scheme 1) is straightforward since the reaction of diethylaminosulfurtrifluoride (DAST)®
with alcohol 4 gives 1 (51% yield) with a small amount of § (easily separated by chromatography). 9
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Scheme 1 : i) H—==— MgBr (leq), THF, RT, 0.5h, 80% ; ii) DAST (leq), CH,Ch, RT, 0.2h,

then Na,CO;, 1 (51%) and 5 (11%).

In agreement with the results obtained with other propargylic alcohols, '° this dehydroxy-fluorination leads
exclusively to the propargylic fluoride. '!
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The introduction of substituents on the triple bond was checked first (Scheme 2) : starting from 1, alkylation,
esterification and Sonogashira type reactions are easily performed ; there is neither inhibition of these
reactions by the fluorine atom nor decomposition of the molecules.
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Scheme 2 : i) nBuli, THF-HMPA (3:1), -78°C—-40°C, 0.6h, then nC;H,Br (2eq), -60°C—
-30°C, 3h, 6a (76%), ii) nBuli, THF -78°C, 0.5h then CICO,Me (1.2eq) 1h then RT 4h, 6b (66%) ;
iii) Pd (PPh;), (0.1eq) Cul (0.leq), Ph COCI (5eq), EtN, RT, 18h, 6¢ (41%).

The hydrostannylation of 1, under classical radical type reaction conditions,'? occurs smoothly giving (77%

overall yield) a 5:4:1 mixture of the E and Z isomers of vinylstannane 2 together with the regioisomer 2' ;
these compounds can be separated by chromatography (Scheme 3).
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Scheme 3 : i) Bu;SnH (1.1eq), AIBN (0.02eq), 90°C, lh, 2E (39%), 2Z (30%), 2' (8%) ; ii) I (leq),
CHCl,, RT, 1h, 3E (69%), 3Z (62%).

Iodination of both derivatives 2E and 2Z gives the vinyliodides 3, stereospecifically and in good yields. The
stereochemistry of these compounds is easily established from the NMR data. 13 These new iodides can be
used both in Sonogashira type reactions ' (using Linstrumelle reaction conditions '*) or in Heck type
reactions ‘¢, under Jeffery's conditions !7 (Scheme 4).
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Scheme 4 : i) Pd (PPh;), (0.05eq); heptyne (Seq), Cul (0.05eq), EtN, RT, 5h, TE (53%), 7Z (48%)
; ii) Pd (OAc), (0.06eq), methyl acrylate (2eq), K,CO; (2.5eq), NBy,Br (leq), DMF, RT, 6h, 8E
(65%), 8Z (60%).
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In both cases, the reactions are stereospecific, '® leading to the corresponding polyunsaturated target
molecules 7 and 8 with complete stereocontrol. !° In the latter case, it is noteworthy that this approach is
complementary to the use of iron-carbonyl complexes which lead only to E, E dienes. *

In conclusion we have developed a new, short, and stereodefined sequence to polyunsaturated systems with a
single fluorine atom in the allylic position. This strategy will be of interest in the preparation of
monofluorinated analogs of various natural products (pheromones, polyunsaturated fatty acid metabolites, ...).
The control of the absolute configuration at the stereogenic centre is another key point in this process.
Therefore, the stereoselectivity of the dehydroxy-fluorination in propargylic systems is currently under active
study by our group. -
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NMR data for2 and 3 :
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